Forecasting short-term mortality trends using Bernstein polynomials
نویسندگان
چکیده
Mortality data play an important role on the fields such as health, epidemiology and national planning. Most mortality models mainly focus providing a perfect fitting, to detriment of exact forecasting result. In this paper, we fit Bernstein polynomial based maximum likelihood inference through simulated annealing method. The proposed method utilizes derivative polynomials describe pattern rates. asymptotic behavior model is also given general results. performance evaluated by examples illustrated applications datasets provided from Human Database (www.mortality.org). real analysis show that approach quite satisfactory in short-term trends.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort term load forecasting using fuzzy logic
Load forecasting is essential for planning and operation in energy management. It enhances the Energy efficient and reliable operation of a power system. The energy supplied by utilities meets the load plus the energy lost in the system is ensured by this tool. Since in power system the next day’s power generation must be scheduled every day. The dayahead short term load forecasting (STLF) is a...
متن کاملShort-Term Load Forecasting Using Random Forests
This study proposes using a random forest model for short-term electricity load forecasting. This is an ensemble learning method that generates many regression trees (CART) and aggregates their results. The model operates on patterns of the time series seasonal cycles which simplifies the forecasting problem especially when a time series exhibits nonstationarity, heteroscedasticity, trend and m...
متن کاملShort - Term Load Forecasting
This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics
سال: 2021
ISSN: ['1532-415X', '0361-0926']
DOI: https://doi.org/10.1080/03610926.2021.1952432